

Prof. Daniel Lago

Encontro 19

09.11.2022

Clinical strategies for implementing lung and diaphragm-protective ventilation: avoiding insufficient and excessive effort

Ewan C. Goligher^{1,2,3}, Annemijn H. Jonkman^{4,5}, Jose Dianti^{1,2}, Katerina Vaporidi⁶, Jeremy R. Beitler⁷, Bhakti K. Patel⁸, Takeshi Yoshida⁹, Samir Jaber¹⁰, Martin Dres^{11,12}, Tommaso Mauri^{13,14}, Giacomo Bellani¹⁵, Alexandre Demoule^{11,12}, Laurent Brochard^{1,5} and Leo Heunks^{4*}

Intensive Care Med (2020) 46:2314–2326

Abstract

- A ventilação mecânica pode ter efeitos adversos tanto no pulmão quanto no diafragma
- A lesão pulmonar é mediada por estresse e tensão mecânicos excessivos (stress e strain), enquanto o diafragma desenvolve atrofia como consequência do baixo esforço respiratório e lesão em caso de esforço excessivo
- A abordagem de ventilação mecânica protetora de pulmão e diafragma visa proteger ambos os órgãos simultaneamente, sempre que possível

Abstract

Esta revisão resume estratégias práticas para alcançar alvos de proteção do pulmão e do diafragma à beira do leito, com foco nas ajustes ventilatórios inspiratório e expiratório, monitoramento do esforço inspiratório ou drive respiratório, gerenciamento de dissincronia e sedação

 Também são discutidas estratégias adjuvantes futuras, incluindo remoção extracorpórea de CO₂, bloqueio neuromuscular parcial e estimulação neuromuscular

Introdução

VM protetora pulmonar e diafragmática

 abordagem que visa limitar os efeitos colaterais da VM em pacientes críticos

Princípio

otimização do esforço respiratório

Objetivos

reduzir a duração da VM, aumentar a sobrevida, acelerar recuperação e prevenir a incapacidade a longo prazo

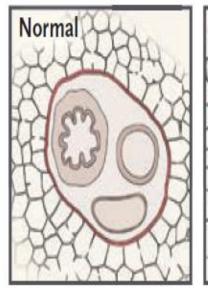
Princípios da ventilação pulmonar protetora

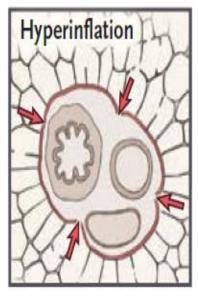
Limitação do estresse mecânico global e regional (pressão aplicada ao pulmão) e tensão (deformação da forma de repouso)

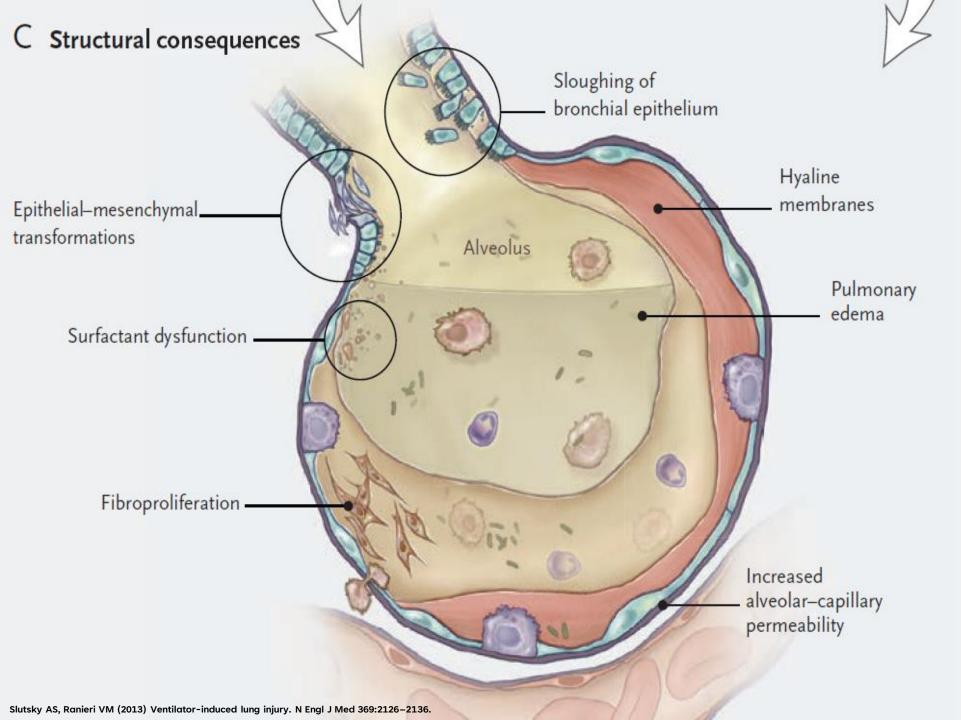
- Hiperdistensão (volutrauma/barotrauma)
- Abertura e fechamento cíclico de alvéolos (atelectrauma)

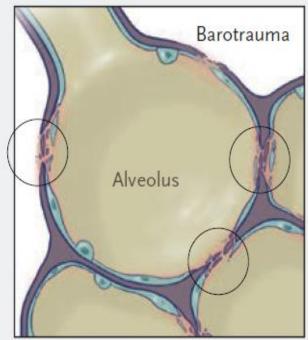
A lesão pulmonar pode ocorrer independentemente se o ventilador (lesão pulmonar induzida pelo ventilador, VILI), o esforço respiratório do paciente (lesão pulmonar autoinfligida pelo paciente, P-SILI) ou ambos estiverem gerando as forças aplicadas ao pulmão

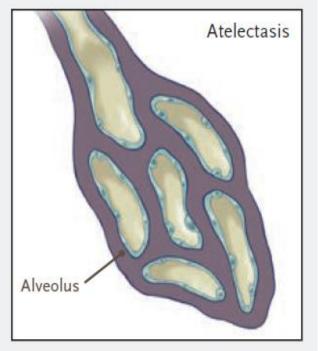
A Ventilation at low lung volume

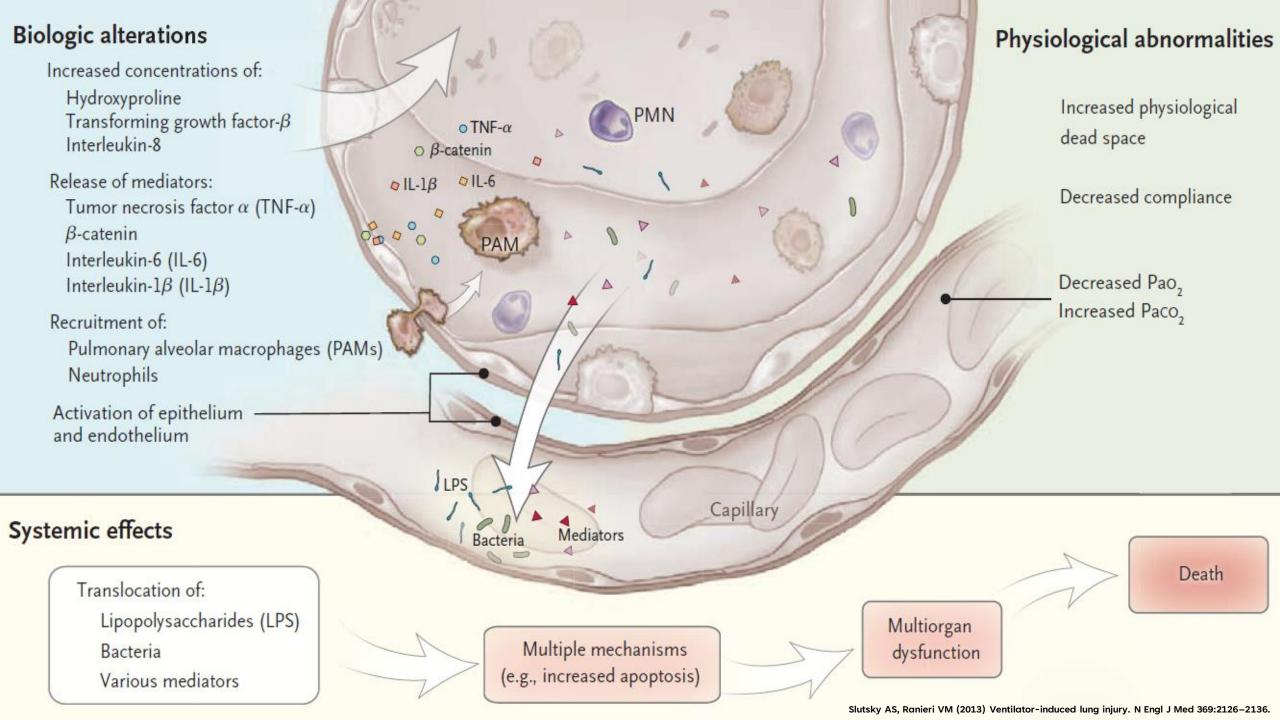


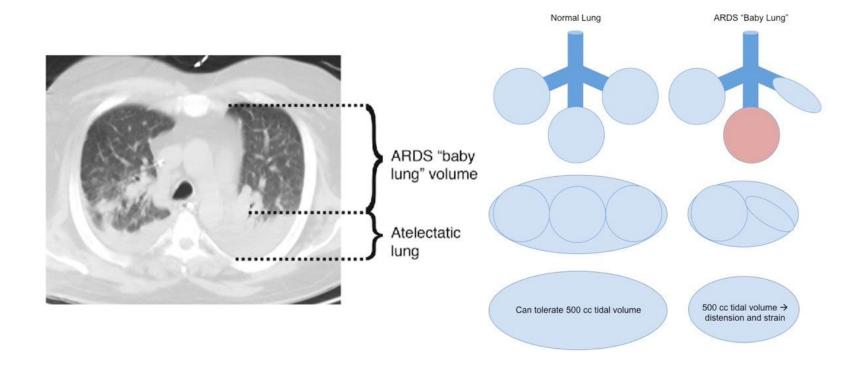

Atelectrauma

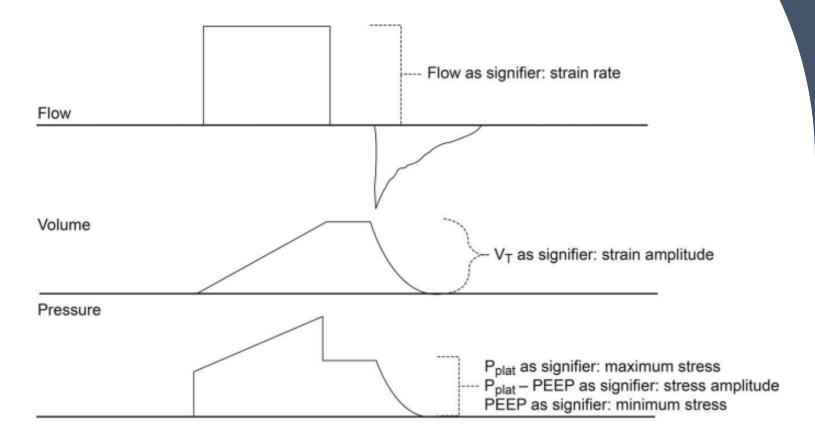

Lung inhomogeneity


B Ventilation at high lung volume





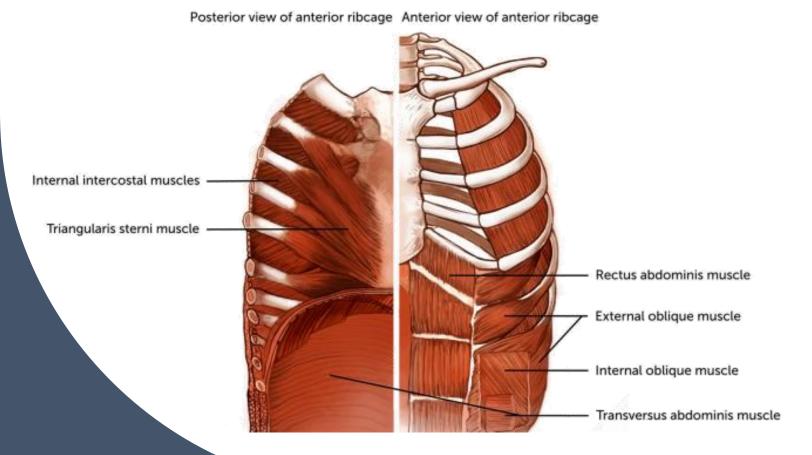



- Princípios da ventilação pulmonar protetora
- Stress: alterações na pressão transpulmonar (Palveolar Ppleural), driving pressure
- Strain: ?
 - Difícil individualizar adequadamente os ajustes ventilatórios para maximizar a proteção pulmonar
- Stress global x stress regional
 - gravidade no pulmão edemaciado → distribuição do colapso e aeração desigual entre as regiões pulmonares dependentes (atelectasia recrutamento) e não dependentes (bem ventiladas alívio da hiperdistensão)

O VC é rotineiramente dimensionado para o peso corporal previsto, que se correlaciona com o volume pulmonar em indivíduos saudáveis. Essa correlação é muito menos precisa em pacientes com SDRA por causa de "inundação" alveolar e atelectasia, resultando no "baby lung" muito menor do que o volume pulmonar predito

Como identificar dados da ventilação pulmonar protetora

 Δ Paw = VT/Crs



 Pressão estática das vias aéreas não é um marcador muito confiável de stress pulmonar, porque reflete contribuições do pulmão e da parede torácica

Pacientes obesos

- exemplo de alta pressão intratorácica (e, portanto, pressão de platô mais alta)
 devido ao peso imposto pela parede torácica
- Stress pulmonar é preferencialmente medido como pressão transpulmonar (PL):
 - permite quantificar a contribuição do pulmão e da parede torácica para alterações na pressão das vias aéreas

Princípios da ventilação protetora diafragmática

Objetivos da VM

- redução da carga da bomba muscular respiratória
- limitar as consequências do alto esforço respiratório (sensação de dispneia, insuficiência respiratória, possível lesão muscular respiratória)

Fraqueza diafragmática

- 64% dos pacientes após 24 h de VM
- 80% dos paciente com desmame difícil
- Esforço excessivo e insuficiente

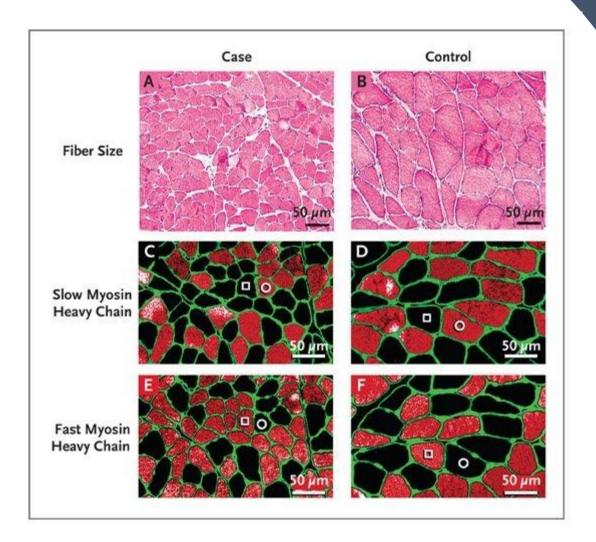
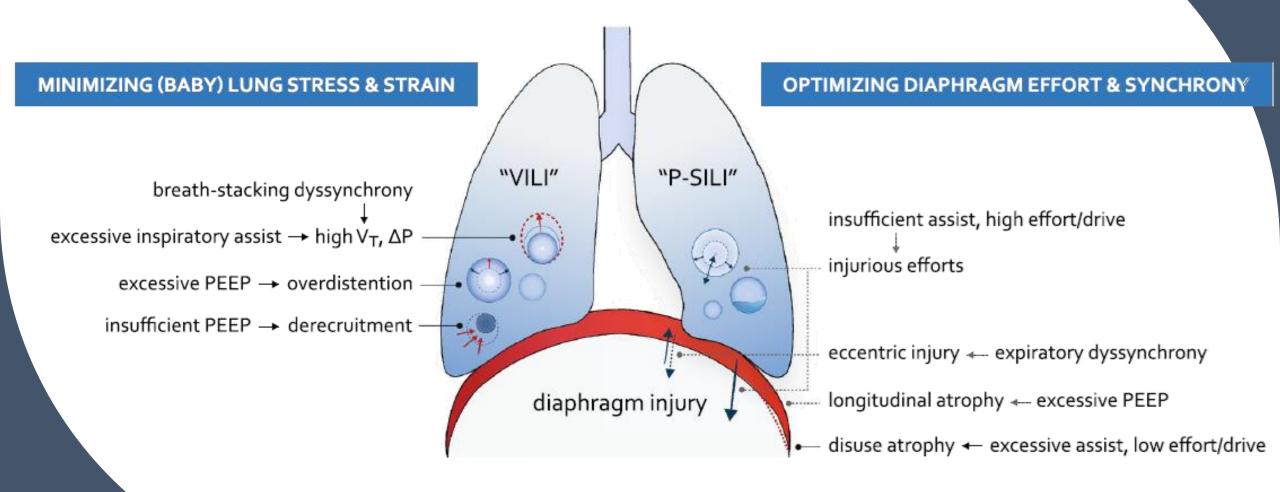



Table 3. Potential Therapeutic Targets for Diaphragm Protection

Goal	Potential Therapeutic Target*
Prevent overassistance myotrauma	Any 1 of: Pmus \geq 3 to 5 cm H ₂ O Δ Pdi \geq 3 to 5 cm H ₂ O Δ Pes \leq -3 to -2 cm H ₂ O P _{0.1} > 1 to 1.5 cm H ₂ O TFdi \geq 15% EAdi \geq target value selected on the basis of Pocc-EAdi index and above targets
Prevent underassistance myotrauma	Any 1 of: Pmus \leq 10 to 15 cm H ₂ O Δ Pdi \leq 10 to 15 cm H ₂ O Δ Pes \geq -12 to -8 cm H ₂ O Pocc \geq -20 to -15 cm H ₂ O P _{0.1} $<$ 3.5 to 5 cm H ₂ O TFdi \leq 30% to 40% EAdi \leq limit value selected on the basis of Pocc-EAdi index and above targets
Prevent eccentric myotrauma	Avoid ineffective triggering and reverse triggering Avoid premature cycling Minimize expiratory braking

Volume corrente

Uso	Vantagens Desvantagens		Alvo sugerido
Marcador indireto de risco	Prontamente	Prontamente Strain = VC/EELV	
de VILI	disponível		
		VC sozinho não é uma medida	
VCexp pode ser usado para		precisa do strain pulmonar	
detectar volumes entregues			
acima do definido no modo		Não reflete o estresse pulmonar	
VCV		e não se adequa ao tamanho do	
		"baby lung"	

Driving pressure

Uso	Vantagens Desvantagens		Alvo sugerido
Monitora o stress e o strain pulmonar resultantes da insuflação com VC	Prontamente disponível	Não reflete o stress regional quando o esforço respiratório é alto Superestima a PL se a elastância da parede torácica estiver aumentada e na presença de atividade muscular expiratória	< 15 cmH ₂ O

Curvas de pressão e fluxo

Uso	Vantagens	Desvantagens	Alvo sugerido
Permite detectar diversas dissincronias paciente-ventilador	Prontamente disponível Detecta prontamente fome de fluxo, empilhamento de ar e ciclagem prematuras	Algumas dissincronias podem não ser imediatamente evidentes sem uma inspeção minuciosa e monitoramento adicional do esforço	Manter a sincronia paciente- ventilador

• Pressão de oclusão nos primeiros 100 ms da inspiração (P0.1)

Uso	Vantagens	Desvantagens	Alvo sugerido
Monitorar o drive	Não invasivo	O drive respiratório elevado	-1 a -4 cmH2O
respiratório e detectar		nem sempre resulta em	
presença de esforço	Medição automatizada	esforço respiratório elevado	
respiratório baixo ou	disponível na maioria	(ou seja, na presença de	
Elevado	dos ventiladores	fraqueza muscular respiratória	
		ou tempo inspiratório curto)	

Delta de pressão de oclusão (∆Pocc)

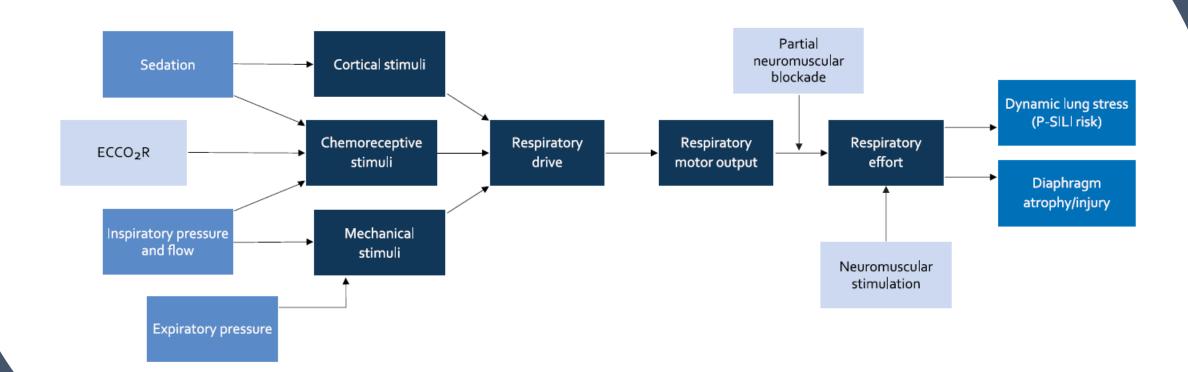
Uso	Vantagens	Desvantagens	Alvo sugerido
Avaliar esforço respiratório excessivo e estresse	Não invasivo	Embora sensível e específico para alto esforço respiratório	Pmus 5–10 cmH ₂ O
pulmonar	Facilmente medido à beira do leito	e estresse pulmonar dinâmico, a técnica não é	Pocc 8–20 cmH ₂ O
		suficientemente precisa para	ΔPL,dyn < 15–20
	Pode prever o esforço muscular respiratório	substituir a medição direta	cmH ₂ O
	(Pmus) e oscilação da pressão transpulmonar		
	(ΔPL,dyn)		
	Detecta apneia auto-		
	disparo		
	Diferenciar diferentes		
	formas de dissincronia		

Pressão esofágica (Pes) e pressão transpulmonar (P_L)

Uso	Vantagens	Desvantagens	Alvo sugerido
Mede e monitora diretamente o esforço respiratório e o stress	Minimamente invasivo Fornece informações	Requer equipamento e treinamento	ΔPes 3–15 cmH ₂ O (proteção diafragmática)
pulmonar	padrão ouro sobre o stress pulmonar (ΔP _L) e esforço respiratório (ΔPes, PTPes)	O balão deve ser calibrado antes cada medição Valores absolutos de Pes tem utilidade incerta	ΔPL,dyn < 15–20 cmH ₂ O (proteção pulmonar)

• Swing de pressão transdiafragmática (ΔP di) e swing de pressão gástrica (ΔP ga)

Uso	Vantagens	Desvantagens	Alvo sugerido
Mede e monitora diretamente o esforço diafragmático e esforço expiratório	Minimamente invasivo Fornece medição direta de esforço diafragmático	Requer equipamento e treinamento O balão deve ser calibrado antes cada medição	ΔPdi–15 cmH ₂ O
	Fornece informações sobre a atividade muscular expiratória	Sem calibração para Pga Difícil avaliação pó esforço inspiratório (carga excêntrica)	


• Fração de espessamento inspiratório do diafragma(TFdi)

Uso	Vantagens	Desvantagens	Alvo sugerido
Avaliação não invasiva do contratilidade mecânica do diafragma	Fornece um índice de esforço diafragmático durante a ventilação	Requer equipamento e treinamento	TFdi 15-30%
	mecânica (tidal TFdi)	O monitoramento contínuo não é viável	
	Fornece um índice de função diafragmátrica (TFdi máximo)		

Atividade elétrica do diafragma (EAdi)

Uso	Vantagens	Desvantagens	Alvo sugerido
Monitorar a atividade elétrica do diafragma	Minimamente invasivo Informação contínua A variação no EAdi se correlaciona com a variação do esforço respiratório	Requer equipamento e treinamento Sem valores de referência	Normalize a EADi alvo com base no Pocc, ΔPdi ou ΔPes

- Embora a estimativa da pressão pleural com balão esofágico pareça ser a técnica preferida para quantificar o estresse pulmonar e o esforço respiratório, atualmente não é amplamente implementada
 - o impacto potencial nos desfechos precisa ser determinado em estudos clínicos
- Sugerimos o monitoramento de rotina:
 - Limitar lesão pulmonar: VC, Pplato e DP
 - Monitorar o drive respiratório e prevenir esforço inadequado: P0.1

Ajustes ventilatórios inspiratórios

- 1) modular o esforço inspiratório do paciente
- 2) minimizar o estresse pulmonar dinâmico
- 3) prevenir ou corrigir dissincronia paciente-ventilador ou qualquer forma de incompatibilidade entre as necessidades e o suporte

Requer compreensão do controle da respiração sob ventilação mecânica, reconhecendo que o controle do sistema respiratório responde às mudanças nas demandas ventilatórias modificando o esforço inspiratório (e, portanto, o volume corrente) em maior extensão do que a frequência respiratória

Ajustes ventilatórios inspiratórios

- Em pacientes com respiração espontânea, o aumento da pressão ou volume aumentará o volume corrente fornecido e reduzirá o esforço inspiratório (já que o drive respiratório depende principalmente da controle quimiorreflexo do pH arterial)
- A assistência excessiva, resultando em VC maior do que a demanda do paciente, pode quase abolir o esforço inspiratório e promover atrofia diafragmática

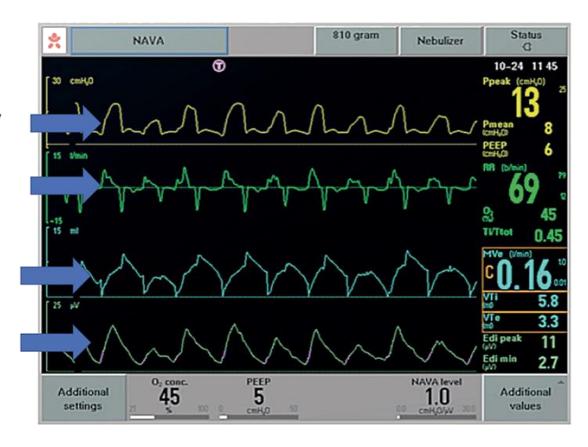
Ajustes ventilatórios inspiratórios

- O aumento do suporte inspiratório pode não atenuar o esforço inspiratório na presença de drive respiratório elevado devido a outros estímulos além do pH/PaCO2:
 - Dor
 - Ansiedade
 - Estimulação de receptores pulmonares periféricos por edema ou inflamação pulmonar
- A PL e o stress pulmonar dinâmico podem aumentar progressivamente com o aumento do suporte inspiratório

Ajustes ventilatórios inspiratórios

- VCV: esforço modificado pelo VC e padrão de entrega do fluxo (tipo de onda e pico)
- PCV e PSV: esforço inspiratório é influenciado pela pressão inspiratória, tempo de subida,
 critério de ciclagem e propriedades mecânicas do sistema respiratório

Independentemente do modo de assistência, o VC fornecido e o esforço respiratório determinarão juntos o estresse pulmonar global e regional, dependendo das propriedades mecânicas do sistema respiratório


Ajustes ventilatórios inspiratórios

Breaths, in synchrony with diaphragm

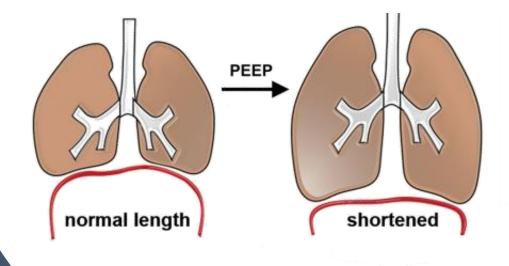
Airflow generated by breaths

Volume of air moved by breaths

Activity of the diaphragm

- Aumento da assistência inspiratória reduzirá a atividade elétrica do diafragma (e vice-versa) em uma ampla faixa de demanda respiratória e, consequentemente, o volume corrente permanece relativamente estável
- A inatividade do diafragma devido à assistência excessiva é improvável no NAVA, pois a baixa atividade do diafragma reduzirá imediatamente a assistência inspiratória

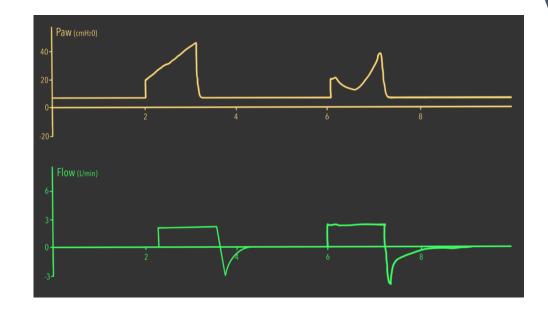
Ajustes ventilatórios expiratórios – PEEP


- Em pulmões recrutáveis, reduz a quantidade de pulmão "sólido" atelectático promovendo distribuição mais homogênea do swing de pressão pleural em toda a superfície pulmonar após uma contração diafragmática
- A distribuição uniforme do estresse dinâmico inspiratório pode diminuir a insuflação assimétrica prejudicial associada ao esforço espontâneo (ou seja, pendelluft), reduzindo o estresse pulmonar regional em regiões pulmonares dependentes

Ajustes ventilatórios expiratórios – PEEP

 Aumentando o EELV, forçando o diafragma a atuar em um comprimento menor e, assim, prejudicando o acoplamento neuromuscular, o aumento da PEEP pode atenuar a força gerada pela contração diafragmática

• Vários estudos clínicos fornecem evidências para sugerir que PEEP mais alta pode tornar o esforço espontâneo menos prejudicial em pacientes com insuficiência respiratória aguda antes da intubação, em pacientes com SDRA e em crianças com m lesão pulmonar


Ajustes ventilatórios expiratórios – PEEP

- Se o diafragma for mantido em um comprimento menor, as fibras musculares podem se adaptar ao comprimento reduzido absorvendo sarcômeros em série (atrofia longitudinal)
- Pode resultar em alongamento excessivo das fibras com a liberação de PEEP durante um TRE em tubo T ou após a extubação
- A possibilidade de fraqueza do diafragma resultante do excesso de PEEP deve ser considerada

Resolvendo as dissincronias

- **Durante a inspiração:** fluxo insuficiente, ciclagem precoce, ciclagem tardia, disparo reverso
- **Durante a expiração:** auto disparo, esforço ineficaz
- Durante a inspiração e expiração: disparo reverso e disparo duplo

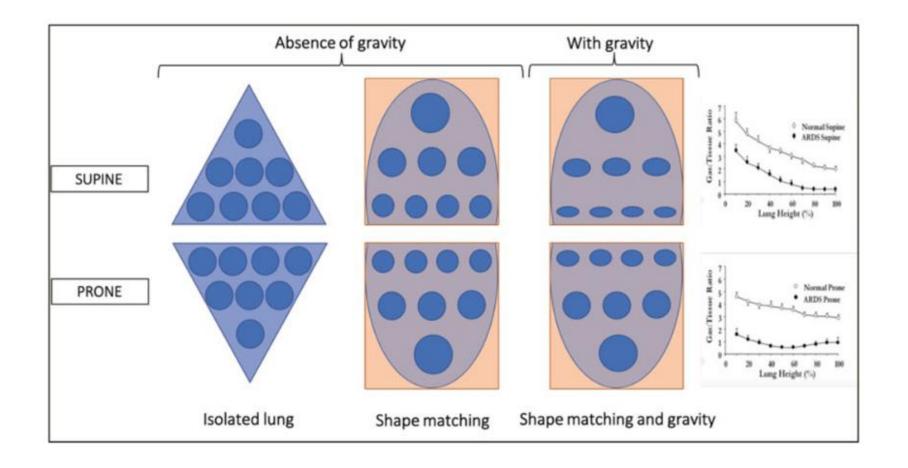
Estratégias de sedação

- Pode facilitar a ventilação protetora reduzindo o esforço respiratório excessivo
- Pode contribuir para a atrofia do diafragma por desuso
- Abordagem criteriosa da sedação é fundamental e o monitoramento do drive e esforço respiratório pode ser útil na seleção da estratégia de sedação que facilita a ventilação protetora

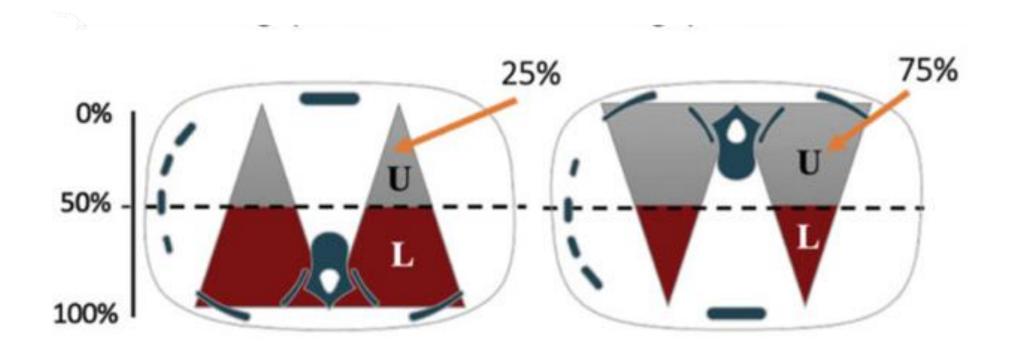
Estratégias de sedação

- Drive elevado ou dissincronia:
- 1) Ajustes ventilatórios
- Tratar fatores que aumentam o drive, como acidose metabólica ou dor

Confiar apenas na sedação para melhorar a interação paciente-ventilador sem abordar essas questões pode paradoxalmente exacerbar a disssincronia, prolongar a ventilação mecânica e exacerbar a disfunção do diafragma



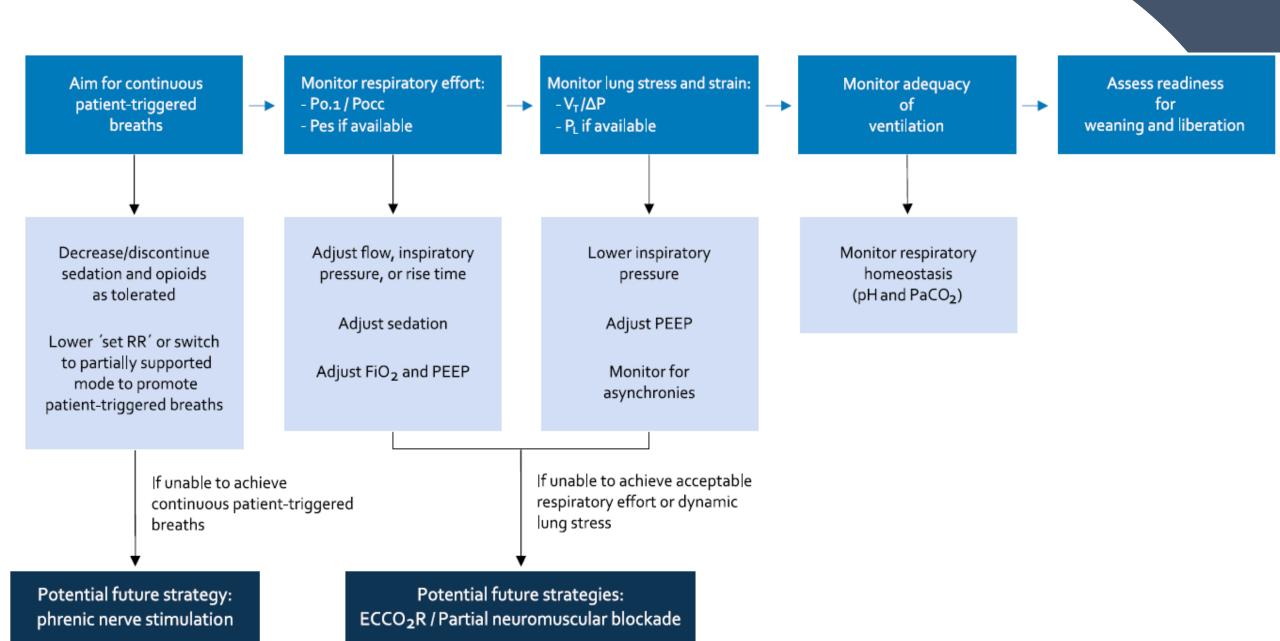
• Estratégias de sedação


Table 2 Effect of sedation on respiratory drive, effort and breathing pattern

Drug class	Inspiratory effort and tidal volume	Respiratory rate	Ventilatory response to hypercapnia and hypox- emia	Effect on diaphragm function and patient-ventilator interaction
Benzodiazepines	↓	↔ or ↑ ↓ at high doses	↓	Delay restoration of diaphragm activity
Propofol	\	←→ or ↑ ↓ at high doses	\	May ↑ dyssynchrony (i.e., ineffective efforts because of lower respiratory effort)
Opioids	←→ or ↑	↓	\	May ↓ dyssynchrony (i.e., fewer ineffective efforts because of slower, deeper respiratory efforts)
Dexmedetomidine	\longleftrightarrow	\longleftrightarrow	\longleftrightarrow	↓ dyssynchrony by decreasing agitation/delirium

Posição prona

Posição prona



Abordagens futuras

- Remoção extracorpórea de CO₂ (ECCO₂R)
- BNM parcial
- Estimulação elétrica: pacing e nervo frênico

Resumo e direções futuras

Obrigado

